Dual Complexes of Cubical Subdivisions of ℝ n

نویسندگان

  • Herbert Edelsbrunner
  • Michael Kerber
چکیده

We use a distortion to define the dual complex of a cubical subdivision of R as an n-dimensional subcomplex of the nerve of the set of n-cubes. Motivated by the topological analysis of high-dimensional digital image data, we consider such subdivisions defined by generalizations of quadand oct-trees to n dimensions. Assuming the subdivision is balanced, we show that mapping each vertex to the center of the corresponding n-cube gives a geometric realization of the dual complex in R.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Complexes of Cubical Subdivisions of R n ∗

We use a distortion to define the dual complex of a cubical subdivision of R as an n-dimensional subcomplex of the nerve of the set of n-cubes. Motivated by the topological analysis of high-dimensional digital image data, we consider such subdivisions defined by generalizations of quadand oct-trees to n dimensions. Assuming the subdivision is balanced, we show that mapping each vertex to the ce...

متن کامل

CUBICAL SUBDIVISIONS AND LOCAL h-VECTORS

Face numbers of triangulations of simplicial complexes were studied by Stanley by use of his concept of a local h-vector. It is shown that a parallel theory exists for cubical subdivisions of cubical complexes, in which the role of the h-vector of a simplicial complex is played by the (short or long) cubical h-vector of a cubical complex, defined by Adin, and the role of the local h-vector of a...

متن کامل

Construction Techniques for Cubical Complexes, Odd Cubical 4-Polytopes, and Prescribed Dual Manifolds

We provide a number of new construction techniques for cubical complexes and cubical polytopes, and thus for cubifications (hexahedral mesh generation). As an application we obtain an instance of a cubical 4-polytope that has a non-orientable dual manifold (a Klein bottle). This confirms an existence conjecture of Hetyei (1995). More systematically, we prove that every normal crossing codimensi...

متن کامل

J an 2 00 4 Construction techniques for cubical complexes , odd cubical 4 - polytopes , and prescribed dual manifolds

We provide a number of new construction techniques for cubical complexes and cubical polytopes, and thus for cubifications (hexahedral mesh generation). As an application we obtain an instance of a cubical 4-polytope that has a non-orientable dual manifold (a Klein bottle). This confirms an existence conjecture of Hetyei (1995). More systematically, we prove that every normal crossing codimensi...

متن کامل

O ct 2 00 3 Construction techniques for cubical complexes , odd cubical 4 - polytopes , and prescribed dual manifolds

We provide a number of new construction techniques for cubical complexes and cubical polytopes, and thus for cubifications (hexahedral mesh generation). Thus we obtain the first instance of a cubical 4-polytope that has a non-orientable dual manifold (a Klein bottle). This confirms the existence conjecture of Hetyei [17, Conj. 2, p. 325]. More systematically, we prove that every normal crossing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2012